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Abstract. Estimates of predator diet composition are essential to our understanding of their ecology.
Although several methods of estimating diet are practiced, methods based on biomarkers have become
increasingly common. Quantitative fatty acid signature analysis (QFASA) is a popular method that contin-
ues to be refined and extended. Quantitative fatty acid signature analysis is based on differences in the
signatures of prey types, often species, which are recognized and designated by investigators. Similarly,
predator signatures may be structured by known factors such as sex or age class, and the season or region
of sample collection. The recognized structure in signature data inherently influences QFASA results in
important and typically beneficial ways. However, predator and prey signatures may contain additional,
hidden structure that investigators either choose not to incorporate into an analysis or of which they are
unaware, being caused by unknown ecological mechanisms. Hidden structure also influences QFASA
results, most often negatively. We developed a new method to explore signature data for hidden structure,
called divisive magnetic clustering (DIMAC). Our DIMAC approach is based on the same distance
measure used in diet estimation, closely linking methods of data exploration and parameter estimation,
and it does not require data transformation or distributional assumptions, as do many multivariate
ordination methods in common use. We investigated the potential benefits of the DIMAC method to detect
and subsequently exploit hidden structure in signature data using two prey signature libraries with quite
different characteristics. We found that the existence of hidden structure in prey signatures can increase the
confusion between prey types and thereby reduce the accuracy and precision of QFASA diet estimates.
Conversely, the detection and exploitation of hidden structure represent a potential opportunity to
improve predator diet estimates and may lead to new insights into the ecology of either predator or prey.
The DIMAC algorithm is implemented in the R diet estimation package qfasar.
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INTRODUCTION

Understanding predator ecology requires
knowledge of their diets. Unfortunately, accurate
diet estimation can be challenging. All methods
of diet estimation have inherent biases or limita-
tions that can influence the accuracy of diet esti-
mates in some situations or for some species
(e.g., Klare et al. 2011, Bowen and Iverson 2013).

In addition, diets may vary seasonally, be influ-
enced by the juxtaposition of home range loca-
tion and the distribution of prey species, differ
among sex and age classes of predators, or vary
due to individual specialization, preference, or
behavior (e.g., Bromaghin et al. 2013, Rode et al.
2014, Mohan et al. 2016, Tartu et al. 2016). Con-
sequently, diet estimation remains an active area
of research in quantitative ecology.
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Quantitative fatty acid signature analysis
(QFASA) is a popular method of estimating
predator diet composition (Iverson et al. 2004).
The elemental unit of information in QFASA is a
fatty acid signature, which is a vector of propor-
tions describing the mass composition of fatty
acids in the storage lipids of an individual preda-
tor or prey animal (hereafter signature). The
method requires a sample of signatures from
predators and each type of prey potentially con-
sumed, as well as constants called calibration
coefficients that adjust for the differential metabo-
lism of fatty acids by predators and are typically
estimated in controlled feeding trials (e.g., Thie-
mann et al. 2008, Budge et al. 2012, Rosen and
Tollit 2012, but see Bromaghin et al., in press). A
predator signature is modeled as a mixture of
prey signatures, with diet composition estimated
as the mixture that minimizes a measure of dis-
tance between observed and modeled predator
signatures. Potential advantages of QFASA
include the large number of fatty acids in lipids,
which can avoid the problem of underdetermined
systems common with stable isotope markers
(e.g., Phillips and Gregg 2003, Brett 2014) and
allow the contribution of more prey types to be
estimated, and that diet estimates pertain to a
period of weeks to months (Budge et al. 2006).

The recognized structure within both prey and
predator signature data inherently influences
QFASA diet estimation. Prey signatures are
grouped into prey types, often by species, and
the proportional contribution of each designated
prey type to a predator diet is estimated. Conse-
quently, the structure imposed by designation of
prey types is one of the most influential decisions
made during an analysis. In addition, the pat-
terns of similarity and dissimilarity among the
signatures of different prey types largely deter-
mine the accuracy with which diets can be esti-
mated (Bromaghin et al. 2016b). If predators
primarily consume prey that have distinct signa-
tures, diet estimation may be very accurate, but
the converse is also true. In addition, if predator
data are structured by factors such as sex or age
class, investigators will likely desire an estimate
of mean diet composition for each class of preda-
tor, and differences in estimated diet composition
among classes of predators can provide impor-
tant insights into feeding ecology (e.g., Bro-
maghin et al. 2013, Rode et al. 2014).

The existence of structure within signature
data that are not explicitly accounted for in an
analysis, which we refer to as hidden structure,
is likely to influence QFASA in undesirable,
though somewhat predictable ways. In particu-
lar, hidden structure within a “library” of prey
signature data is likely to be associated with
increased confusion between prey types, some-
times called prey confounding (Bromaghin et al.
2016a), and decreases the degree to which the
mean prey-type signatures used in diet estima-
tion are representative of individual prey ani-
mals. As an extreme example, if the signatures of
a prey type were comprised of two relatively dis-
tinct groups of approximately equal size, the
mean signature would not be representative of
any individual prey and model performance
would almost certainly be reduced. In general,
prey confounding decreases the ability of the
model to distinguish between prey types and
accurately estimate diet composition (Bromaghin
et al. 2016a). Hidden structure in predator signa-
tures is probably of less concern in most investi-
gations, but could result in estimates of mean
diet for predator classes that overlook interesting
aspects of predator ecology.
The detection and exploitation of hidden struc-

ture in signature data therefore provide a poten-
tial opportunity for investigators to improve diet
estimates and gain insights into aspects of ecol-
ogy linked to diets. Partitioning a library of prey
signatures into clusters with a finer resolution
than the original prey types, as warranted by the
data, can produce prey types that are more
homogeneous and distinct and thereby improve
diet estimation through reduced prey confound-
ing. Further, the discovery of unexpected struc-
ture within either prey or predator signatures
can provide new insights into their ecology, or at
least generate hypotheses about ecological mech-
anisms that might underlie such structure (e.g.,
Marcus et al. 2016).
Multivariate methods routinely used to explore

signature data for structure, or more commonly to
visualize the structure represented by designated
prey types, may not be ideally suited for diet esti-
mation with compositional data. For example,
ordination methods such as principal component
analysis, linear discriminant analysis, multidimen-
sional scaling, and correspondence analysis are
common choices (e.g., Meynier et al. 2010, Wold
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et al. 2011, Couturier et al. 2013, Galicia et al.
2015, Tartu et al. 2016). Many of these methods
are based on an assumption of multivariate nor-
mality, even though compositional data are inher-
ently non-normal. Data transformations to either
achieve approximate normality or remove the lin-
ear redundancy inherent in compositional data
(signature proportions must sum to 1.0) are often
applied (e.g., Budge et al. 2006, 2012, Wang et al.
2016), though rarely evaluated for suitability. Even
though use of these methods may be appropriate,
the lack of any linkage with methods of diet esti-
mation may limit their effectiveness for explo-
ration of signature data.

We develop and investigate the performance of
a new clustering technique to detect and exploit
hidden structure in fatty acid signature data. Our
primary motivation is to identify clusters of simi-
lar signatures within designated prey types to
minimize confounding within a prey library and
thereby maximize the accuracy of diet estimation.
However, we acknowledge that identifying struc-
ture within predator data can provide useful
insights into their ecology and might be particu-
larly beneficial in some investigations. Our
method has three characteristics that we expect
will convey benefits when used in combination
with QFASA diet estimation. The method is based
on the same distance measure that will subse-
quently be used for diet estimation. Using meth-
ods of data exploration that are closely linked to
methods of diet estimation increases the internal
consistency of an analysis and can be expected to
produce clusters of predators or prey that are, in a
sense, optimally structured for diet estimation.
Basing the method on a measure of distance
designed for compositional data avoids the need
for data transformation. Finally, the method is
nonparametric and therefore requires no subjec-
tive distributional assumptions.

METHODS

Data inputs
We based our investigation on two prey

libraries having quite different characteristics, both
of which have previously been used to evaluate
the performance of QFASA diet estimators (e.g.,
Bromaghin et al. 2016b, which cites data sources).
The marine mammal library is comprised of 357
signatures of 67 fatty acids classified into seven

prey types (Rode et al. 2014), and the Scotian Shelf
fish library is made up of 954 signatures of 68 fatty
acids grouped into 28 prey types (Budge et al.
2002). In addition to the larger number of prey
types in the fish library, it is characterized by a
higher degree of prey confounding (Bromaghin
et al. 2016a). With the mammal library, we used a
suite of 31 fatty acids and the marine-fed mink
calibration coefficients that have previously been
used with this library (Thiemann et al. 2008). With
the fish library, we used the extended dietary suite
of fatty acids (Iverson et al. 2004) and the calibra-
tion coefficients of Rosen and Tollit (2012), with
the exceptions of values of 1 for 16:3n-1, 20:1n-5,
and 24:1n-11 (no values published for these fatty
acids) and 1.04 for 22:2n-6 and 0.23 for 24:1n-9
(Nordstrom et al. 2008).
Both prey libraries were prepared for analysis

by replacing fatty acid proportions that were
missing or equal to zero with a small positive
value equal to 75% of the smallest non-zero pro-
portion in the prey library. Replacement of signa-
ture proportions with value zero is common in
QFASA because popular distance measures
involve logarithms and are therefore not defined
for signatures containing zeros (Bromaghin et al.
2016a). Values of the other proportions in each
signature were scaled by a constant so that all
summed to 1 using the multiplicative method
(Mart!ın-Fern!andez et al. 2011). Signatures were
then censored to the suite of fatty acids used with
each library (described above) and augmented
with an additional proportion so that all summed
to 1, which can reduce bias in diet estimates under
some circumstances (Bromaghin et al. 2016a). A
calibration coefficient for the augmented propor-
tion was obtained using the function cc_aug of
the R package qfasar (Bromaghin, in press).

Divisive magnetic clustering
The divisive magnetic clustering (DIMAC)

algorithm is a modification of the diana algo-
rithm of the R package cluster (Maechler et al.
2016). The algorithm begins with all signatures
in one cluster. The two signatures having the
greatest distance between them are selected as
initial “magnets,” and each signature is drawn to
its nearest magnet to form clusters. After the
selection of the initial two magnets, the algo-
rithm enters an iterative phase. In each iteration,
the mean distance between the mean cluster
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signature and individual signatures within the
cluster is computed for each cluster, and the clus-
ter having the largest mean distance is desig-
nated as the “active” cluster. The two signatures
within the active cluster having the greatest dis-
tance between them are found and selected as
new magnets, one of which replaces the original
magnet for the active cluster, so the total num-
bers of clusters increases by one during each iter-
ation. All signatures are then assigned to their
nearest magnet, without regard for cluster mem-
bership in the preceding iteration. The distance
between individual signatures and their cluster
mean is summed across clusters as a measure of
distance reduction relative to the preceding itera-
tion. The iterations continue in that fashion, with
one additional cluster added each cycle, until
each signature is a singleton cluster.

We applied the DIMAC algorithm separately
to the data for each original prey type using the
Aitchison distance measure (Aitchison 1986). We
used the Aitchison distance because it is com-
monly used with compositional data and has
been reported to have advantages over other dis-
tances commonly used with QFASA (Bromaghin
et al. 2016b). Because the within-cluster distance
will generally decrease from its maximum when
all signatures are in one cluster to zero when each
signature forms a singleton cluster, only unusu-
ally large reductions in total distance signal the
discovery of meaningful structure. Consequently,
we examined distance by iteration to find large
reductions that potentially identified an appropri-
ate number of clusters for each prey type and
partitioned prey signatures into those clusters.

Leave-one-prey-out analyses
We performed leave-one-prey-out analyses

(Bromaghin et al. 2016a) to determine whether
partitioning the prey libraries successfully reduced
prey confounding compared to the original
libraries, and therefore might produce more accu-
rate diet estimates, and also to potentially fine-
tune a partition. An individual prey signature was
temporarily removed from the library, the mean
prey-type signature was recomputed, and the
mixture of prey types best approximating the
removed signature was estimated identically to
diet estimation without calibration coefficients.
This process was repeated for each signature in a
library and the mixture estimates were averaged

by prey type and across all signatures irrespective
of prey type. The degree to which estimates were
associated with the correct prey types measured
the distinctiveness of prey types within a library,
and patterns of estimation error measured con-
founding between prey types.
A leave-one-prey-out analysis was performed

with the original prey library to provide a com-
parative baseline. A leave-one-prey-out analysis
was then performed with the partitioned library,
and the estimates were pooled back to the origi-
nal prey types for comparison. If the partition
produced only marginal improvement or caused
increased confounding between some clusters,
compared to the results obtained with the origi-
nal library, it was reevaluated and potentially
modified. This evaluation was performed itera-
tively until the overall increase in performance
was maximized with the smallest number of
clusters.

Example diets
The degree to which a partitioned library

might lead to improved diet estimates was
assessed by simulating diet estimation with a
small number of example diets. We used the six
“realistic” diets of gray seals (Halichoerus grypus,
four combinations of sex and season) and polar
bears (Ursus maritimus, adult females and males),
predators suitable for these libraries, obtained
from the literature and previously used as test
cases to investigate the performance of QFASA
diet estimators (Bromaghin et al. 2015). In addi-
tion, we constructed best- and worst-case diets
for each partitioned library by maximizing and
minimizing, respectively, the correlation between
dietary proportions and the differences between
leave-one-prey-out estimates obtained with the
partitioned and original libraries. Best-case diets
were therefore concentrated on prey types whose
leave-one-prey-out results most improved with
the partitioned library, with the converse being
true for the worst-case diets.
For each example diet described above, we

compared the accuracy of diet estimation with
the original and partitioned libraries by simulat-
ing the signatures of 5000 predators conditioned
on each example diet and then estimating the diet
each signature was based on. Predator signatures
were simulated using methods previously
described (e.g., Bromaghin et al. 2016b). Briefly,
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an independent bootstrap sample was drawn
from the signatures of each prey type, with boot-
strap sample sizes obtained using the method of
Bromaghin (2015). Mean prey-type signatures
were computed from the bootstrap samples and a
predator signature was computed as a weighted
average of the mean prey signatures, with the
proportions of the example diet as weights. Cali-
bration coefficients (referenced above) were then
used to transform the simulated signatures from
the prey space to the predator space, accounting
for predator metabolism (Bromaghin et al. 2015).

The diet composition used to generate each
simulated signature was estimated in the preda-
tor space (Bromaghin et al. 2015) with the Aitchi-
son distance measure (Aitchison 1986) using
both the original and partitioned libraries. Esti-
mates obtained with the partitioned libraries
were pooled back to the original prey types to
permit comparison with the results obtained
using the original libraries. The mean and stan-
dard error of the estimates for each diet were
computed by prey type, and the mean was com-
pared to the known diet mixture to estimate bias.
Summary measures across all prey types were
computed as the sum of the absolute values of
bias and the square root of the sum of variances.
All computations were made using R version
3.3.0 (R Core Team 2016). All QFASA-specific
computations, including the DIMAC algorithm,
leave-one-prey-out analyses, simulating predator
signatures, and estimating diet composition,
were made using version 1.0.0 of the R package
qfasar (Bromaghin, in press).

RESULTS

DIMAC results
The DIMAC results from the fish library led to

an initial partition of the 28 original prey types
into a total of 54 clusters, with the number of
clusters per prey type ranging from 1 to 4.
Among the 17 prey types that were partitioned,
the reduction in total distance between individ-
ual signatures and cluster mean signatures ran-
ged from 17% to 70% and averaged 40%.

With the mammal library, DIMAC results led
to an initial partition of the seven original prey
types into 13 clusters, with one prey type not par-
titioned and the other six types partitioned into
two clusters each. Among the six prey types that

were partitioned, the decrease in total distance
between individual signatures and cluster means
ranged from 10% to 23% and averaged 15%.
An example of the large reduction in total dis-

tance between individual and mean signatures
that occurs when hidden structure is discovered
is provided by the gaspereau (Alosa pseudoharen-
gus) prey type of the fish library (Fig. 1). Moving
from one to two clusters resulted in a modest
reduction in distance, but partitioning the data
into three clusters produced a substantial reduc-
tion. As the data were partitioned into more than
three clusters, the total distance declined rather
gradually to zero. We interpreted this result as
an indication that three clusters were likely
appropriate for this prey type. The substantial
distance reduction when gaspereau were parti-
tioned into three clusters is representative of
what we observed with most prey types that
were partitioned, especially with the fish library.
As an aside, newly identified clusters in both

prey libraries had varying degrees of correspon-
dence with auxiliary information (results not
shown). Nearly all of the fish library prey types
that were partitioned showed moderate to per-
fect association with information such as the
location or year of sample collection. Results

Fig. 1. The total Aitchison distance between individ-
ual signatures and the cluster mean signature,
summed across clusters, as a function of the number of
clusters into which the signatures of the gaspereau
prey type of the fish library were partitioned. The large
drop in distance with three clusters suggested that par-
titioning the signatures of this prey type into three
clusters could improve diet estimation.
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with the mammal library were less striking. The
partition of beluga whales (Delphinapterus leucas)
into two clusters matched sampling location
quite well, and the partition of bowhead whales
(Balaena mysticetus) into two clusters was related
to whale length. However, clusters of the other
mammal prey types did not show any obvious
relationships with auxiliary information.

Leave-one-prey-out analyses
The comparison of leave-one-prey-out results

with the original and initial partitioned libraries
led us to iteratively fine-tune the partitions of
both libraries. Fine-tuning was motivated by the
finding that initial partitions for some prey types
only marginally improved leave-one-prey-out
results or increased confounding between some
clusters within other prey types. Consequently,
we reassessed the DIMAC results in an attempt
to improve our original partitions and again
assessed the revised partition using an additional
leave-one-prey-out analysis.

Three fine-tuning iterations with the fish
library led to a final partition containing 53 clus-
ters (Table 1), with the total reduction in distance
for the 16 prey types that were partitioned rang-
ing from 17% to 70% and averaging 40%. The
proportion of prey associated with the correct
prey type averaged across prey types improved
by 32%, and the average across individual prey
increased by 55% (Table 1).

For the mammal library, three iterations led to
a final partition containing 10 clusters (Table 2),
with the total reduction in distance for the three
partitioned prey types ranging from 14% to 23%
and averaging 18%. Consistent with the lower
reduction in total distance obtained with this
library, the proportion of prey associated with
the correct prey type averaged across prey types
improved by 2%, with only the spotted seal
(Phoca largha) prey type improving modestly, and
the average across individual prey increased by
1% (Table 2).

Example diets
The bootstrap sample size algorithm (Bro-

maghin 2015) indicated that samples of three
herring (Clupea harengus) and one from each of
the other prey types in the fish library produced
simulated predator signatures with realistic

Table 1. Proportion of leave-one-prey-out estimates
attributed to the correct prey type with the original
(Orig.) and partitioned (Part.) prey libraries, and the
number of clusters in the partitioned library.

Prey type Orig. Clusters Part.

Atlantic argentine 0.9574 2 0.9670
Butterfish 0.7992 1 0.7873
Capelin 0.4937 4 0.6820
Cod 0.1168 3 0.1025
Gaspereau 0.3481 3 0.8660
Haddock 0.0001 3 0.0620
Halibut 0.9597 1 0.9418
Herring 0.3651 3 0.6353
Lobster 0.8644 1 0.8323
Longhorn sculpin 0.0258 2 0.6885
Mackerel 0.2257 2 0.7337
Northern sand lance 0.1706 2 0.1401
Northern shrimp 0.5868 3 0.8225
Ocean pout 0.0003 2 0.7537
Plaice 0.0017 3 0.3745
Pollock 0.0396 1 0.0006
Red crab 0.4991 1 0.4668
Red hake 0.6621 1 0.3998
Redfish 0.3852 3 0.6491
Rock crab 0.8318 1 0.8124
Sea raven 0.4597 1 0.3621
Silver hake 0.4187 1 0.1644
Smooth skate 0.8291 1 0.8294
Thorny skate 0.9769 1 0.9372
White hake 0.0011 2 0.3725
Winter flounder 0.7079 2 0.8035
Winter skate 0.0990 2 0.5755
Yellowtail 0.1681 1 0.0442
Prey-type average 0.4283 . . . 0.5645
Individual average 0.2755 . . . 0.4274

Table 2. Proportion of leave-one-prey-out estimates
attributed to the correct prey type with the original
(Orig.) and partitioned (Part.) mammal libraries,
and the number of clusters in the partitioned
library.

Prey Orig. Clusters Part.

Bearded seal 0.8321 1 0.8323
Beluga whale 0.9089 2 0.9161
Bowhead whale 0.9624 1 0.9610
Ribbon seal 0.7006 2 0.7320
Ringed seal 0.7429 1 0.7460
Spotted seal 0.5388 2 0.5860
Walrus 0.9668 1 0.9704
Prey-type average 0.8075 . . . 0.8206
Individual average 0.8629 . . . 0.8705
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levels of variation. For the mammal library, sam-
ple sizes of four ringed seals (Pusa hispida) and
one of each of the other prey types produced
simulated signatures with realistic variation.

Results based on the realistic diets confirmed
our expectation that improvement in diet estima-
tion was dependent on reduced prey confound-
ing for those prey types contributing to diet. The
gray seal diets had contributions from several
prey types whose leave-one-prey-out results
improved with partitioning, for example, herring
and redfish (Sebastes fasciatus), and diet estimates
with the partitioned library improved corre-
spondingly (Tables 3–6). Among these four diets
(combinations of sex and season), the sum of

absolute bias across prey types decreased
between 25% and 45% and the square root of the
sum of the variances decreased between 19% and
32% with the partitioned library. The smallest
improvement occurred with the diet of males
sampled in spring (Table 4), which had a larger
contribution from pollock (Pollachius pollachius),
a highly confounded prey type whose leave-one-
prey-out results slightly worsened with parti-
tioning (Table 1). Estimates for the realistic polar
bear diets obtained with the original library were
superior to those obtained with the partitioned
library. The sum of absolute bias across prey
types increased 26% for the adult female diet and
31% for the adult male diet with the partitioned

Table 3. Bias and standard errors (SE) of diet estimates
obtained from 5000 simulated signatures condi-
tioned on the realistic diet of female gray seals sam-
pled in spring with the original (Orig.) and
partitioned (Part.) fish libraries.

Prey Diet

Bias SE

Orig. Part. Orig. Part.

Atlantic argentine 0.000 0.028 0.018 0.061 0.037
Butterfish 0.000 0.011 0.004 0.028 0.015
Capelin 0.013 0.154 0.103 0.141 0.095
Cod 0.005 0.012 0.014 0.049 0.045
Gaspereau 0.000 0.005 0.032 0.035 0.059
Haddock 0.000 0.000 0.004 0.000 0.014
Halibut 0.000 0.002 0.003 0.008 0.011
Herring 0.053 0.021 !0.013 0.090 0.057
Lobster 0.000 0.000 0.000 0.003 0.002
Longhorn sculpin 0.024 !0.021 !0.010 0.017 0.036
Mackerel 0.000 0.010 0.019 0.039 0.040
Northern sand lance 0.422 !0.266 !0.101 0.148 0.127
Northern shrimp 0.000 0.036 0.017 0.075 0.037
Ocean pout 0.000 0.000 0.003 0.001 0.011
Plaice 0.000 0.001 0.014 0.015 0.037
Pollock 0.054 !0.029 !0.024 0.054 0.056
Red crab 0.000 0.002 0.001 0.013 0.006
Red hake 0.000 0.016 0.002 0.037 0.008
Redfish 0.371 !0.116 !0.087 0.182 0.144
Rock crab 0.000 0.000 0.000 0.000 0.001
Sea raven 0.000 0.025 0.004 0.065 0.019
Silver hake 0.008 0.127 0.013 0.202 0.055
Smooth skate 0.000 0.003 0.001 0.014 0.005
Thorny skate 0.003 !0.003 !0.003 0.004 0.004
White hake 0.015 !0.015 !0.005 0.003 0.023
Winter flounder 0.020 !0.001 !0.001 0.027 0.024
Winter skate 0.003 !0.002 0.001 0.007 0.014
Yellowtail 0.009 0.001 !0.009 0.025 0.001
Over all prey 1.000 0.906 0.503 0.387 0.265

Table 4. Bias and standard errors (SE) of diet estimates
obtained from 5000 simulated signatures condi-
tioned on the realistic diet of male gray seals sam-
pled in spring with the original (Orig.) and
partitioned (Part.) fish libraries.

Prey Diet

Bias SE

Orig. Part. Orig. Part.

Atlantic argentine 0.000 0.031 0.017 0.044 0.031
Butterfish 0.000 0.025 0.011 0.034 0.020
Capelin 0.004 0.077 0.066 0.087 0.066
Cod 0.039 0.035 0.009 0.106 0.073
Gaspereau 0.000 0.013 0.051 0.035 0.066
Haddock 0.000 0.009 0.026 0.037 0.049
Halibut 0.000 0.016 0.007 0.037 0.020
Herring 0.032 0.011 0.002 0.064 0.054
Lobster 0.000 0.001 0.000 0.006 0.002
Longhorn sculpin 0.024 !0.020 !0.005 0.018 0.035
Mackerel 0.000 0.005 0.012 0.022 0.029
Northern sand lance 0.071 !0.035 !0.018 0.063 0.059
Northern shrimp 0.000 0.022 0.022 0.043 0.039
Ocean pout 0.000 0.005 0.014 0.015 0.028
Plaice 0.000 0.009 0.018 0.037 0.041
Pollock 0.306 !0.147 !0.122 0.109 0.118
Red crab 0.000 0.001 0.000 0.005 0.003
Red hake 0.000 0.012 0.002 0.037 0.009
Redfish 0.335 !0.132 !0.097 0.122 0.108
Rock crab 0.000 0.001 0.000 0.006 0.003
Sea raven 0.000 0.017 0.009 0.035 0.023
Silver hake 0.018 0.118 0.036 0.183 0.097
Smooth skate 0.000 0.002 0.002 0.009 0.009
Thorny skate 0.033 !0.003 !0.020 0.048 0.026
White hake 0.063 !0.049 !0.025 0.034 0.049
Winter flounder 0.046 !0.011 0.000 0.050 0.043
Winter skate 0.006 !0.005 0.003 0.009 0.020
Yellowtail 0.023 !0.009 !0.022 0.032 0.005
Over all prey 1.000 0.821 0.617 0.329 0.268
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library, and the square root of the sum of the
variances across prey types increased 10% and
7%, respectively (Table 7).

Results of diet estimation with the best- and
worst-case diets supported our hypothesis that
diet estimation would improve in the best case
and worsen in the worst case. With the partitioned
fish library, the sum of absolute bias across prey
types decreased 41% and the square root of the
sum of the variances decreased 22% for the best-
case diet. Conversely, with the worst-case diet, the
sum of absolute bias increased 128% and the
square root of the sum of the variances decreased
14% (Table 8). With the partitioned mammal
library, the sum of absolute bias increased for both

the best- and worst-case diets, 98% and 38%,
respectively, and the square roots of the sums of
the variances decreased slightly with both diets,
13% and 4%, respectively (Table 9).

DISCUSSION

Our DIMAC approach has obvious value as a
data exploration tool in QFASA investigations,
detecting hidden structure in prey signature data
that can potentially be used to refine prey-type
designations and thereby improve diet estima-
tion. The reassignment of each signature to the
nearest magnet during each iteration of the algo-
rithm, independently from its cluster assignment

Table 5. Bias and standard errors (SE) of diet estimates
obtained from 5000 simulated signatures condi-
tioned on the realistic diet of female gray seals sam-
pled in fall with the original (Orig.) and partitioned
(Part.) fish libraries.

Prey Diet

Bias SE

Orig. Part. Orig. Part.

Atlantic argentine 0.000 0.023 0.014 0.055 0.033
Butterfish 0.000 0.012 0.005 0.030 0.015
Capelin 0.022 0.151 0.086 0.146 0.092
Cod 0.017 0.000 0.000 0.050 0.039
Gaspereau 0.000 0.004 0.029 0.031 0.056
Haddock 0.000 0.000 0.005 0.002 0.017
Halibut 0.000 0.003 0.004 0.010 0.013
Herring 0.014 0.030 0.017 0.071 0.053
Lobster 0.000 0.000 0.000 0.005 0.002
Longhorn sculpin 0.032 !0.028 !0.016 0.022 0.040
Mackerel 0.000 0.008 0.016 0.032 0.036
Northern sand lance 0.400 !0.262 !0.091 0.141 0.128
Northern shrimp 0.000 0.033 0.016 0.072 0.036
Ocean pout 0.000 0.000 0.004 0.002 0.014
Plaice 0.000 0.002 0.016 0.020 0.040
Pollock 0.054 !0.031 !0.028 0.052 0.051
Red crab 0.000 0.003 0.001 0.016 0.008
Red hake 0.000 0.014 0.002 0.037 0.008
Redfish 0.408 !0.127 !0.103 0.179 0.148
Rock crab 0.000 0.000 0.000 0.001 0.001
Sea raven 0.000 0.028 0.005 0.069 0.022
Silver hake 0.000 0.141 0.019 0.218 0.054
Smooth skate 0.000 0.002 0.001 0.013 0.004
Thorny skate 0.003 !0.002 !0.002 0.007 0.005
White hake 0.000 0.000 0.009 0.003 0.023
Winter flounder 0.045 !0.013 !0.010 0.037 0.033
Winter skate 0.002 0.000 0.002 0.012 0.013
Yellowtail 0.003 0.008 !0.003 0.028 0.003
Over all prey 1.000 0.926 0.505 0.390 0.265

Table 6. Bias and standard errors (SE) of diet estimates
obtained from 5000 simulated signatures condi-
tioned on the realistic diet of male gray seals sam-
pled in fall with the original (Orig.) and partitioned
(Part.) fish libraries.

Prey Diet

Bias SE

Orig. Part. Orig. Part.

Atlantic argentine 0.000 0.026 0.021 0.052 0.038
Butterfish 0.000 0.015 0.006 0.032 0.017
Capelin 0.030 0.126 0.082 0.133 0.089
Cod 0.010 0.014 0.012 0.058 0.046
Gaspereau 0.000 0.007 0.028 0.034 0.050
Haddock 0.000 0.001 0.011 0.007 0.026
Halibut 0.000 0.007 0.005 0.017 0.016
Herring 0.037 0.027 0.001 0.082 0.055
Lobster 0.000 0.001 0.000 0.005 0.002
Longhorn sculpin 0.022 !0.017 !0.006 0.022 0.035
Mackerel 0.000 0.008 0.018 0.034 0.035
Northern sand lance 0.321 !0.183 !0.074 0.128 0.111
Northern shrimp 0.000 0.030 0.020 0.064 0.037
Ocean pout 0.000 0.001 0.007 0.006 0.018
Plaice 0.000 0.003 0.018 0.025 0.043
Pollock 0.109 !0.065 !0.058 0.071 0.070
Red crab 0.000 0.003 0.002 0.017 0.009
Red hake 0.000 0.015 0.002 0.041 0.009
Redfish 0.373 !0.132 !0.101 0.155 0.134
Rock crab 0.000 0.000 0.000 0.001 0.002
Sea raven 0.000 0.025 0.005 0.060 0.020
Silver hake 0.000 0.115 0.025 0.176 0.062
Smooth skate 0.000 0.003 0.002 0.015 0.009
Thorny skate 0.019 !0.017 !0.015 0.013 0.014
White hake 0.003 !0.002 0.011 0.009 0.028
Winter flounder 0.051 !0.011 !0.007 0.042 0.036
Winter skate 0.019 !0.013 !0.013 0.022 0.017
Yellowtail 0.006 0.011 !0.006 0.036 0.004
Over all prey 1.000 0.876 0.557 0.354 0.258
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in the preceding iteration, gives the algorithm
extreme flexibility to conform to whatever struc-
ture exists within signature data. The correspon-
dence between clusters and auxiliary information
that we observed, particularly with the fish
library, is interesting and provides some evidence
that the method detected true structure within
the data, rather than random noise. At the same
time, we do not wish to overemphasize the
importance of such correspondence, as exploiting
the existence of hidden structure in a prey library
has the potential to improve diet estimation irre-
spective of whether or not available auxiliary
data help explain that structure.

The number of clusters to select for each prey
type is, unavoidably, a subjective decision. Our
recommendation is to apply the approach con-
servatively and only partition prey types when
doing so leads to a substantial reduction in dis-
tance and does not increase confounding among
prey types that may contribute importantly to
diet. Based on our results with these two prey
libraries, meaningful improvement in leave-one-
prey-out estimates tended to be associated with
partitions providing a reduction in total distance
of at least 20%, with reductions exceeding 30%
performing even better. However, determining
whether a threshold of this magnitude might be
suitable for other libraries will require additional

experience with the method. Until more univer-
sal guidance emerges from additional experi-
ence, investigators who wish to experiment with
this technique may need to conduct an evalua-
tion with their specific prey library following our
examples.
If the number of clusters within a partitioned

library exceeds the number of fatty acids in (po-
tentially augmented) signatures, as was the case
here with the fish library, investigators may need
to balance the competing problems of bias vs.
non-uniqueness in diet estimates. Using fewer
than the optimal number of clusters, to avoid
non-uniqueness caused by the number of clusters
exceeding the number of fatty acids, may increase
prey confounding and thereby reduce estimation
accuracy. Conversely, if the number of clusters
exceeds the number of fatty acids, diet estimates
may not be unique. To the extent that any lack of
uniqueness occurs between partitioned clusters of
original prey types, the problem can be mitigated
by pooling estimates back to the original prey
types (e.g., Meynier et al. 2010), and pooling to
an even smaller number of “reporting groups”
can further reduce bias and variance (Bromaghin
2008). However, there is no guarantee that
pooling estimates will completely remedy non-
uniqueness. An intermediate approach in which
the most distinct clusters are partitioned first and

Table 7. Bias and standard errors (SE) of diet estimates obtained from 5000 simulated signatures conditioned on
the realistic diets of adult female and male polar bears with the original (Orig.) and partitioned (Part.) mammal
libraries.

Predator Prey Diet

Bias SE

Orig. Part. Orig. Part.

Female Bearded seal 0.065 0.008 0.008 0.093 0.093
Beluga whale 0.005 0.008 0.013 0.026 0.028

Bowhead whale 0.051 !0.011 !0.014 0.041 0.039
Ribbon seal 0.000 0.027 0.039 0.066 0.087
Ringed seal 0.873 !0.084 !0.105 0.144 0.159
Spotted seal 0.000 0.044 0.051 0.080 0.087

Walrus 0.006 0.008 0.009 0.019 0.019
Over all prey 1.000 0.189 0.239 0.207 0.227

Male Bearded seal 0.207 !0.001 !0.003 0.099 0.099
Beluga whale 0.014 0.002 0.009 0.029 0.032

Bowhead whale 0.077 !0.011 !0.015 0.043 0.042
Ribbon seal 0.000 0.022 0.032 0.054 0.071
Ringed seal 0.658 !0.060 !0.076 0.122 0.130
Spotted seal 0.000 0.039 0.044 0.073 0.078

Walrus 0.044 0.008 0.009 0.035 0.035
Over all prey 1.000 0.144 0.188 0.192 0.205
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Table 8. Bias and standard errors (SE) of diet estimates obtained from 5000 simulated signatures conditioned on
the best- and worst-case diets with the original (Orig.) and partitioned (Part.) fish libraries.

Prey

Best case Worst case

Diet

Bias SE

Diet

Bias SE

Orig. Part. Orig. Part. Orig. Part. Orig. Part.

Atlantic argentine 0.024 0.013 !0.002 0.040 0.028 0.041 !0.012 !0.027 0.031 0.021
Butterfish 0.022 0.015 0.002 0.031 0.023 0.042 !0.003 !0.015 0.026 0.022
Capelin 0.040 !0.003 0.018 0.041 0.036 0.033 !0.007 0.016 0.030 0.031
Cod 0.022 0.025 0.012 0.064 0.047 0.042 !0.011 !0.002 0.051 0.049
Gaspereau 0.070 !0.020 !0.001 0.056 0.046 0.019 0.010 0.044 0.039 0.039
Haddock 0.029 !0.009 !0.001 0.044 0.035 0.039 !0.025 0.003 0.035 0.044
Halibut 0.022 0.004 !0.003 0.032 0.027 0.042 0.002 !0.013 0.041 0.035
Herring 0.048 !0.011 !0.018 0.044 0.032 0.030 !0.008 !0.015 0.032 0.020
Lobster 0.021 0.007 0.006 0.033 0.025 0.043 !0.003 0.006 0.033 0.030
Longhorn sculpin 0.083 !0.038 !0.018 0.051 0.050 0.013 0.011 0.024 0.036 0.039
Mackerel 0.069 !0.020 !0.012 0.051 0.041 0.020 0.008 0.016 0.040 0.037
Northern sand lance 0.021 0.001 0.008 0.037 0.034 0.043 !0.001 0.000 0.046 0.037
Northern shrimp 0.045 !0.007 0.000 0.038 0.035 0.031 0.002 0.005 0.035 0.032
Ocean pout 0.090 0.002 0.002 0.070 0.048 0.009 0.008 0.016 0.025 0.031
Plaice 0.057 !0.001 0.004 0.065 0.054 0.026 0.006 0.011 0.049 0.043
Pollock 0.020 0.003 !0.005 0.039 0.028 0.043 0.000 !0.015 0.049 0.036
Red crab 0.021 0.001 0.001 0.031 0.030 0.043 0.002 0.000 0.040 0.037
Red hake 0.000 0.009 0.006 0.019 0.015 0.054 !0.012 !0.011 0.035 0.032
Redfish 0.047 !0.017 !0.011 0.033 0.030 0.030 0.000 0.008 0.028 0.029
Rock crab 0.022 !0.003 !0.007 0.022 0.019 0.042 0.004 !0.008 0.033 0.030
Sea raven 0.015 0.011 0.002 0.039 0.026 0.046 0.004 !0.010 0.046 0.036
Silver hake 0.001 0.021 0.003 0.045 0.015 0.053 0.006 !0.039 0.070 0.030
Smooth skate 0.024 0.002 !0.009 0.040 0.026 0.042 !0.004 !0.017 0.037 0.032
Thorny skate 0.020 0.028 0.016 0.057 0.041 0.043 0.003 0.001 0.046 0.040
White hake 0.057 !0.019 !0.013 0.052 0.047 0.026 0.012 0.013 0.049 0.042
Winter flounder 0.032 !0.013 !0.001 0.027 0.026 0.037 0.009 0.017 0.037 0.031
Winter skate 0.066 !0.013 0.020 0.058 0.055 0.021 0.001 0.022 0.039 0.040
Yellowtail 0.012 0.031 0.001 0.059 0.026 0.047 !0.003 !0.030 0.051 0.030
Over all prey 1.000 0.348 0.205 0.240 0.188 1.000 0.177 0.404 0.215 0.184

Table 9. Bias and standard errors (SE) of diet estimates obtained from 5000 simulated signatures conditioned on
the best- and worst-case diets with the original (Orig.) and partitioned (Part.) mammal libraries.

Prey

Best case Worst case

Diet

Bias SE

Diet

Bias SE

Orig. Part. Orig. Part. Orig. Part. Orig. Part.

Bearded seal 0.100 !0.007 !0.010 0.062 0.060 0.191 !0.007 !0.013 0.074 0.075
Beluga whale 0.123 0.006 0.014 0.079 0.065 0.165 0.006 0.018 0.066 0.062
Bowhead whale 0.095 !0.011 !0.014 0.054 0.052 0.197 !0.013 !0.016 0.068 0.059
Ribbon seal 0.204 0.019 0.019 0.139 0.125 0.074 !0.006 0.000 0.071 0.074
Ringed seal 0.110 0.001 !0.021 0.106 0.085 0.180 !0.025 !0.042 0.082 0.071
Spotted seal 0.257 !0.001 0.019 0.167 0.146 0.015 0.049 0.058 0.084 0.088
Walrus 0.111 !0.007 !0.007 0.031 0.030 0.178 !0.005 !0.004 0.045 0.045
Over all prey 1.000 0.052 0.103 0.269 0.235 1.000 0.110 0.152 0.188 0.181
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the total number of clusters is constrained to not
exceed the number of fatty acids may be worth
consideration. However, the most effective strat-
egy in any particular investigation seems likely to
depend on the structure of the prey library and
typical predator diet composition, and a small
simulation study may be necessary to inform the
choice.

The DIMAC approach seems likely to be use-
ful for other types of data exploration in QFASA
studies. The algorithm could easily be applied to
all prey or predator signature data. In such cases,
one would be interested in how well clusters
align with auxiliary information associated with
the signature data. The results might support
expectations, or perhaps reveal unexpected rela-
tionships that lead to the generation of new
hypotheses regarding ecological mechanisms
underlying observed patterns. For example, our
finding that bowhead whale cluster membership
was associated with whale length was unex-
pected and raises questions regarding ecological
mechanisms that we cannot yet answer, but sug-
gests that their diet or metabolism may change
with size or age. Investigators sometimes search
for patterns in diet estimates (e.g., Bromaghin
et al. 2013, Galicia et al. 2015) and the DIMAC
method could be applied to vectors of diet esti-
mates as easily as signatures. However, because
diet estimates incorporate estimation variance
and potentially the influence of calibration coeffi-
cient inaccuracies (Bromaghin et al. 2016b), it
might be preferable to first use the method to
look for patterns in predator signatures rather
than estimated diets.

The results we obtained with the fish and mam-
mal libraries seem likely to exemplify the range of
results that might be obtained with other libraries.
With the fish library, we found partitions for
many prey types that substantially reduced total
distance between signatures and the cluster mean.
Exploiting this structure reduced prey confound-
ing, as measured by leave-one-prey-out analyses,
and improved diet estimates. Conversely, none
of the prey types within the mammal library
appeared to be comprised of distinct clusters and,
consequently, partitioning that prey library pro-
vided no benefits. The lack of improvement with
the mammal library was not completely unex-
pected. This library has a simple structure, being
comprised of only seven species, several of which

have distinctive mean signatures (Table 2). Prey
confounding within the mammal library primar-
ily occurs among the three small ice seal species
(ribbon [Histriophoca fasciata], ringed, and spotted
seals; Bromaghin, in press), but partitioning those
prey types did not meaningfully improve discrim-
ination between them.
One potential consequence of partitioning sig-

nature data into clusters that we did not fully
anticipate is the potential to increase confounding
among some prey types. We generally partitioned
prey types when doing so led to a substantial
reduction in the total distance between individual
and mean signatures, so leave-one-prey-out esti-
mates for those prey types tended to improve
substantially. However, partitioning sometimes
produced increased confounding between the
new clusters and other prey types. The discovery
of this effect led us to implement an iterative
approach in which we attempted to balance
improved performance for some prey types and
elevated levels of confounding among others.
Our results support previous conclusions that

the performance of QFASA diet estimators
depends strongly on the interaction between prey
library characteristics and predator diet composi-
tion (Bromaghin et al. 2016a, b). Partitioning the
fish library improved its structure with respect to
several species of fish that were meaningful com-
ponents of the realistic gray seal diets, so use of
the partitioned library produced superior esti-
mates. Similarly, the results for the best- and
worst-case diets for the fish library clearly illus-
trate the importance of the diet–library interac-
tion for diet estimation. When diet composition
was concentrated on prey types of the fish library
whose structure improved with partitioning, diet
estimates improved; the converse was also true.

CONCLUSIONS

We propose the DIMAC method as a valuable
new tool to aid in the exploration of fatty acid
signature data. Basing data exploration and diet
estimation on identical methods creates an inter-
nal consistency within an analysis, noticeably
lacking in prior applications of QFASA, which
can be expected to enhance the effectiveness of
data exploration to inform decisions necessary
for diet estimation. The discovery of hidden
structure within a prey library can be exploited
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to produce substantially improved diet estimates
if the structure of the partitioned prey library
reduces confounding among prey consumed by
predators. In addition, the method may reveal
unexpected patterns in signatures that generate
hypotheses regarding ecological mechanisms to
explain those patterns and ultimately lead to a
refined understanding of either predator or prey
ecology. The DIMAC algorithm is available for
use by other investigators in the R package
qfasar (Bromaghin, in press).
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